343 research outputs found

    Resonances from perturbations of quantum graphs with rationally related edges

    Full text link
    We discuss quantum graphs consisting of a compact part and semiinfinite leads. Such a system may have embedded eigenvalues if some edge lengths in the compact part are rationally related. If such a relation is perturbed these eigenvalues may turn into resonances; we analyze this effect both generally and in simple examples.Comment: LaTeX source file with 10 pdf figures, 24 pages; a replaced version with minor improvements, to appear in J. Phys. A: Math. Theo

    Scattering solutions in a network of thin fibers: small diameter asymptotics

    Full text link
    Small diameter asymptotics is obtained for scattering solutions in a network of thin fibers. The asymptotics is expressed in terms of solutions of related problems on the limiting quantum graph. We calculate the Lagrangian gluing conditions at vertices for the problems on the limiting graph. If the frequency of the incident wave is above the bottom of the absolutely continuous spectrum, the gluing conditions are formulated in terms of the scattering data for each individual junction of the network

    On the structure of eigenfunctions corresponding to embedded eigenvalues of locally perturbed periodic graph operators

    Full text link
    The article is devoted to the following question. Consider a periodic self-adjoint difference (differential) operator on a graph (quantum graph) G with a co-compact free action of the integer lattice Z^n. It is known that a local perturbation of the operator might embed an eigenvalue into the continuous spectrum (a feature uncommon for periodic elliptic operators of second order). In all known constructions of such examples, the corresponding eigenfunction is compactly supported. One wonders whether this must always be the case. The paper answers this question affirmatively. What is more surprising, one can estimate that the eigenmode must be localized not far away from the perturbation (in a neighborhood of the perturbation's support, the width of the neighborhood determined by the unperturbed operator only). The validity of this result requires the condition of irreducibility of the Fermi (Floquet) surface of the periodic operator, which is expected to be satisfied for instance for periodic Schroedinger operators.Comment: Submitted for publicatio

    Quantum Graphs II: Some spectral properties of quantum and combinatorial graphs

    Full text link
    The paper deals with some spectral properties of (mostly infinite) quantum and combinatorial graphs. Quantum graphs have been intensively studied lately due to their numerous applications to mesoscopic physics, nanotechnology, optics, and other areas. A Schnol type theorem is proven that allows one to detect that a point belongs to the spectrum when a generalized eigenfunction with an subexponential growth integral estimate is available. A theorem on spectral gap opening for ``decorated'' quantum graphs is established (its analog is known for the combinatorial case). It is also shown that if a periodic combinatorial or quantum graph has a point spectrum, it is generated by compactly supported eigenfunctions (``scars'').Comment: 4 eps figures, LATEX file, 21 pages Revised form: a cut-and-paste blooper fixe

    Quasiperiodic surface Maryland models on quantum graphs

    Full text link
    We study quantum graphs corresponding to isotropic lattices with quasiperiodic coupling constants given by the same expressions as the coefficients of the discrete surface Maryland model. The absolutely continuous and the pure point spectra are described. It is shown that the transition between them is governed by the Hill operator corresponding to the edge potential.Comment: 12 page

    Range descriptions for the spherical mean Radon transform

    Get PDF
    The transform considered in the paper averages a function supported in a ball in \RR^n over all spheres centered at the boundary of the ball. This Radon type transform arises in several contemporary applications, e.g. in thermoacoustic tomography and sonar and radar imaging. Range descriptions for such transforms are important in all these areas, for instance when dealing with incomplete data, error correction, and other issues. Four different types of complete range descriptions are provided, some of which also suggest inversion procedures. Necessity of three of these (appropriately formulated) conditions holds also in general domains, while the complete discussion of the case of general domains would require another publication.Comment: LATEX file, 55 pages, two EPS figure

    Index theorems for quantum graphs

    Get PDF
    In geometric analysis, an index theorem relates the difference of the numbers of solutions of two differential equations to the topological structure of the manifold or bundle concerned, sometimes using the heat kernels of two higher-order differential operators as an intermediary. In this paper, the case of quantum graphs is addressed. A quantum graph is a graph considered as a (singular) one-dimensional variety and equipped with a second-order differential Hamiltonian H (a "Laplacian") with suitable conditions at vertices. For the case of scale-invariant vertex conditions (i.e., conditions that do not mix the values of functions and of their derivatives), the constant term of the heat-kernel expansion is shown to be proportional to the trace of the internal scattering matrix of the graph. This observation is placed into the index-theory context by factoring the Laplacian into two first-order operators, H =A*A, and relating the constant term to the index of A. An independent consideration provides an index formula for any differential operator on a finite quantum graph in terms of the vertex conditions. It is found also that the algebraic multiplicity of 0 as a root of the secular determinant of H is the sum of the nullities of A and A*.Comment: 19 pages, Institute of Physics LaTe

    On occurrence of spectral edges for periodic operators inside the Brillouin zone

    Full text link
    The article discusses the following frequently arising question on the spectral structure of periodic operators of mathematical physics (e.g., Schroedinger, Maxwell, waveguide operators, etc.). Is it true that one can obtain the correct spectrum by using the values of the quasimomentum running over the boundary of the (reduced) Brillouin zone only, rather than the whole zone? Or, do the edges of the spectrum occur necessarily at the set of ``corner'' high symmetry points? This is known to be true in 1D, while no apparent reasons exist for this to be happening in higher dimensions. In many practical cases, though, this appears to be correct, which sometimes leads to the claims that this is always true. There seems to be no definite answer in the literature, and one encounters different opinions about this problem in the community. In this paper, starting with simple discrete graph operators, we construct a variety of convincing multiply-periodic examples showing that the spectral edges might occur deeply inside the Brillouin zone. On the other hand, it is also shown that in a ``generic'' case, the situation of spectral edges appearing at high symmetry points is stable under small perturbations. This explains to some degree why in many (maybe even most) practical cases the statement still holds.Comment: 25 pages, 10 EPS figures. Typos corrected and a reference added in the new versio

    Absence of bound states for waveguides in 2D periodic structures

    Full text link
    We study a Helmholtz-type spectral problem in a two-dimensional medium consisting of a fully periodic background structure and a perturbation in form of a line defect. The defect is aligned along one of the coordinate axes, periodic in that direction (with the same periodicity as the background), and bounded in the other direction. This setting models a so-called "soft-wall" waveguide problem. We show that there are no bound states, i.e., the spectrum of the operator under study contains no point spectrum.Comment: This is an updated version of our paper (in slightly different form in Journal of Mathematical Physics). An anonymous reviewer kindly made us aware that ref. 10 is not applicable in our situation. An application of the theorem in ref. 10 would have proved the absence of singular continuous spectrum also. Our result on the absence of point spectrum is not affected by thi
    corecore